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A GENERAL MIXED COVOLUME FRAMEWORK
FOR CONSTRUCTING CONSERVATIVE SCHEMES

FOR ELLIPTIC PROBLEMS

SO-HSIANG CHOU AND PANAYOT S. VASSILEVSKI

Abstract. We present a general framework for the finite volume or covol-
ume schemes developed for second order elliptic problems in mixed form, i.e.,
written as first order systems. We connect these schemes to standard mixed fi-
nite element methods via a one-to-one transfer operator between trial and test
spaces. In the nonsymmetric case (convection-diffusion equation) we show
one-half order convergence rate for the flux variable which is approximated
either by the lowest order Raviart–Thomas space or by its image in the space
of discontinuous piecewise constants. In the symmetric case (diffusion equa-
tion) a first order convergence rate is obtained for both the state variable (e.g.,
concentration) and its flux. Numerical experiments are included.

1. Introduction

The purpose of this paper is to give a unified approach for analyzing a number
of finite volume or covolume schemes developed for second order elliptic problems
in mixed form, i.e., written as first order systems. The joint framework we use is
based on relating all these schemes to the standard mixed method by utilizing a
one-to-one mapping between the lowest order Raviart–Thomas spaces V̂h for the
vector unknown (also called velocity) and the corresponding spaces of piecewise
(discontinuous) constant vectors that are used in the covolume schemes of the main
interest. Covolume schemes are popular ([10, 11, 20, 21, 24]) in practical fluid me-
chanics computations due to their conservative properties; namely, they represent
discrete analogs of the underlying physical conservation laws dictating the behavior
of the fluid system. For instance, if the main variables of interest of the underlying
fluid system are a state variable (concentration, temperature, pressure, etc.) and a
flux variable (gradient of the state variable), the covolume method then uses two
partitions of the fluid domain to find approximations of these two variables. A
conservation law on the primal volumes is used for the state variable and a con-
stitutive law on the dual volumes or covolumes are used for the flux variable. In
the case of porous media flow the conservation law for the primal volumes is the
mass conservation law, and the constitutive law for the covolumes is the Darcy law.
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A survey paper ([24]) on the literature of the covolume methods up to 1995 was
written by Nicolaides, Porsching and Hall, and the reader can find various fluid
mechanics applications therein. Recent theoretic as well as computational works
on covolume methods are [12]–[19] and [25].

The organization of this paper is as follows. In §2, we formulate two covolume
methods for a nonsymmetric elliptic problem in the state variable p: one for which
the approximant of the velocity u = −K∇p,K, a matrix, is piecewise constant; and
the other for which the approximate velocity field is from a Raviart–Thomas space.
In §3 we introduce a transfer operator γh to determine the test spaces, and we
study its properties in §5. Derived in §4 are a priori estimates useful for proving
stability and existence of the saddle-point formulation of the methods. The main
convergence results are contained in Theorem 6.1. Numerical experiments are given
in §7.

2. Problem formulations

We concentrate on the general second order elliptic problem,

− div(K∇p) + div(bp) + c0p = f(x), x ∈ Ω,(2.1)

and to be specific we impose the Dirichlet boundary condition p = 0 on ∂Ω. The
domain Ω is a polygonal domain in the plane, and we assume that it is either covered
by a rectangular or triangular quasi-uniform partition Th. Generalizations to three-
dimensional polytopes is straightforward. The coefficient K = (krs(x, y))2r,s=1 is
assumed to be symmetric, bounded and positive definite uniformly in Ω. For the
convection-dominated case, i.e., when

γ1 ≤ inf
ξ∈R2

ξTKξ
ξT ξ

≤ sup
ξ∈R2

ξTKξ
ξT ξ

≤ γ2 � |b|∞,(2.2)

in general, as is well known, one has to use local refinement near the boundary
layers. This issue will not be pursued in the present paper, and we keep the con-
vection term div(bp) in our considerations for the sake of generality. Moreover, to
avoid technical details, we will even assume that the following relation between the
b and c0 exists:

1
2

div b+ c0 ≥ γ0 = Const > 0, in Ω.(2.3)

This assumption implies coercivity of the elliptic operator L ≡ − div(K·)+div(b·)+
c0 and solvability and uniqueness of the boundary value problem.

We next introduce a new (vector) unknown u = −K∇p and rewrite (2.1) as the
system

K−1u = −∇p,
div u+ div(bp) + c0p = f.

(2.4)

In the standard mixed finite element method, one would use only Th to define
the discrete weak formulation. In covolume methods, we will use two partitions: a
primal partition Th on which the local mass conservation law (2.4)2 holds, and a dual
partition Qh (a union of covolumes) over which (2.4)1 holds in the average sense.
The most well-known example is the MAC (Marker and Cell) scheme ([22]) that uses
two staggered rectangular grids. In general, we can classify covolume methods into
overlapping and nonoverlapping types, according to whether covolumes overlap or
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Figure 1. Dual domain with overlapping covolumes: the dashed
boxes Qi+1/2 and Qi,j+1/2 are covolumes; ci+1/2,j and ci,j+1/2 are
the midpoints of the edges of the primal volume Qi,j whose center
is ci,j .

not. For example, in Figure 1, the dashed covolumes are overlapped. The analysis
of such covolume methods was discussed in [8, 14, 17, 19].

On the other hand, we have nonoverlapping covolumes in in Figure 2. For
instance, in Figure 1 the primal partition is the union of rectangles. A typical
interior covolume in the dual partition is the dashed quadrilateral, the closure of
the union of the two triangles T+

E ∪ T−E sharing the common side E. The two
vertices in the interiors of the two rectangles are their centers. Note that each edge
E of the primal element corresponds to a covolume. On the boundary the covolume
is either a T+

E or a T−E . Such covolume methods were analyzed in [12, 13, 16]. In
this paper we develop a general framework for the nonoverlapping case and refer
the reader to [19] for the overlapping case.

Let Hloc(div) be the space of vector functions that are locally in H(div, Q)
for any Q ∈ Qh, and let H1

loc(Th) be the set of all L2(Ω) functions that locally
are in H1(T ) for all T ∈ Th. A natural weak formulation of (2.4) from the above
considerations is

(K−1u, v)−
∑

Q∈Qh

(∫
Q

div vp−
∫

∂Q

pv · n
)

= 0, for all v ∈ Hloc(div);

∑
T∈Th

(
−
∫

T

∇q · u+
∫

∂T

u · nq
)
−
∑

T∈Th

(∫
T

pb · ∇q +
∫

∂T

qpb · n
)

+ (c0p, q) = (f, q), for all q ∈ H1
loc(Th).

(2.5)

The traces of q on ∂T and the traces of v · n are taken from the interior of T and
from the interior of Q ∈ Qh, respectively.
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Figure 2. Primal and dual domains; the dual element (covolume)
QE = T+

E ∪E ∪ T−E .

To be specific, from now on we assume that each Q ∈ Qh is associated with an
edge E of elements from Th. We will write Q = QE . Also, the neighboring elements
in Th that share the same edge E will be denoted by T+

E and T−E .
Now it is clear that using the divergence theorem one gets the expression∫

∂Q

pv · n =
∫

T+
E

∇p · v +
∫

T−
E

∇p · v +
∫

T+
E ∪T−

E

div vp−
∫

E

[p]E v · nE .(2.6)

Here, [p]E = limt→+0(p(x + tnE) − p(x − tnE)) for x ∈ E, stands for the jump of
p across the edge E. The unit vector nE associated with the edge E is considered
fixed once chosen, whereas n always denotes an outward unit normal vector.

Now we are in a position to derive the finite volume type, or covolume finite
element discretizations of the mixed system in the weak formulation (2.5), which can
be viewed as nonconforming mixed finite element discretizations of (2.1). Let Wh

be the space of piecewise constant functions with respect to the primal triangulation
Th, and let Vh be the space of piecewise constant vector functions with respect to
the dual partition Qh that have a continuous normal trace across the interior edges
E; more precisely,

Vh :=
{
v : v|K is constant, K = T+

E , T
−
E ,

v|T+
E
· nE = v|T−

E
· nE , for all QE = T+

E ∪ E ∪ T−E ∈ Qh

}
.

(2.7)

Then the discrete system reads as follows.
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Find uh ∈ Vh, ph ∈ Wh such that

(K−1uh, v) +
∑

E∈Eh

∫
E

v · nE [ph]E = 0, for all v ∈ Vh,(2.8)

∑
E∈Eh

∫
E

uh · nE [q]E −
∑

T∈Th

∫
∂T

qi
(
pi

h(b · n)+ + po
h(b · n)−

)
− (c0ph, q) = −(f, q), for all q ∈ Wh.

Here Eh is the set of all edges (including the boundary ones). For boundary edges
E we set qo = 0 for all q ∈ Wh and in particular po

h = 0. Note that we have used
the weak form (2.5) with the first equation rewritten using expression (2.6) based
on the fact that we deal with piecewise constant functions. For the discretization
of the convection part we have utilized an upwinding strategy; namely, with the
value (b · n)− ≡ min(0, b · n) we associate po

h, the trace of ph from the exterior of
T , and with (b · n)+ ≡ max(0, b · n) we associate the value pi

h, i.e., the trace of ph

from the interior of T .
One may also consider a Petrov–Galerkin type mixed covolume scheme. That

is, we seek the solution ûh ∈ V̂h and ph ∈Wh such that

(K−1ûh, v) +
∑

E∈Eh

∫
E

v · nE [ph]E = 0, for all v ∈ Vh ⊂ Vh,(2.9)

∑
E∈Eh

∫
E

ûh · nE [q]E −
∑

T∈Th

∫
∂T

qi
(
pi

h(b · n)+ + po
h(b · n)−

)
− (c0ph, q) = −(f, q),

for all q ∈ Wh.

Here, Vh is a proper subspace of Vh of the same dimension as the trial space V̂h

(the lowest order Raviart–Thomas space).

3. Determination of a test space by an edge-averaging operator

To analyze the covolume schemes (2.8) we will relate it to the standard mixed
finite element method applied to (2.4). Let us take the corresponding mixed finite
element spaces V̂h to be the Raviart–Thomas spaces. Note that functions in these
spaces have continuous normal components across the edges. For triangular ele-
ments the Raviart–Thomas spaces are characterized by the piecewise polynomials

of the form
[
a1 + cx
b1 + cy

]
that have continuous normal traces across the edges of

the triangles T ∈ Th. Each function v ∈ V̂h is determined from the interpolation
conditions ∫

E

v · nE , for the three edges E of a given element T ∈ Th.

Similarly, for rectangular elements the space V̂h is defined as piecewise polynomials

of the form
[
a1 + b1x
a2 + b2y

]
on every rectangle T ∈ Th. The interpolation conditions

here are again specified on the edges of each element T ; namely,∫
E

v · nE , for all four edges E of the given element T ∈ Th.
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We now define the transfer operator γh : V̂h → Vh that relates Vh with the
Raviart–Thomas space V̂h as follows:

(γhv)|QE
=

{
1
|E|
∫

E
v− dρ, on T−E ,

1
|E|
∫

E
v+ dρ, on T+

E ,
(3.1)

where |E| denotes the measure of E. We make obvious modifications for boundary
edges E. Note that γhv is a discontinuous piecewise constant vector function with
continuous normal trace and hence belongs to Vh. Therefore, a minimal space
with piecewise constant vector functions, locally in H(div, Q) and hence locally
divergence free, is the space Vh := γhV̂h. It is clear that if γhv̂ = 0 for some
v̂ ∈ V̂h, this will imply v̂ · nE = 0 and therefore v̂ = 0. Hence, γh is injective.
Actually, the following local estimates for γh hold:

‖γhv̂‖20,T ' |T |
∑

E⊂∂T

(v̂(mE) · v̂(mE)) ' ‖v̂‖20,T ,

where v̂(mE) is evaluated at the midpoint mE of the edge E from the interior side
of T . The above inequalities in particular imply the global equivalence

‖γhv̂‖0 ' ‖v̂‖0 ·(3.2)

Therefore, for the Petrov–Galerkin mixed covolume scheme (2.9) we can use the
space Vh = γhV̂h.

Let us describe a basis of the space Vh. Since the elements of Vh are piecewise
constant vectors with continuous normal component across each interior edge E for
E ∈ QE , we have v|QE

= αnE + α+τ+
E + α−τ−E . Here,

τ+
E =

{
τE , on T+

E ,
0, on T−E ,

and analogously for

τ−E =
{
τE , on T−E ,
0, on T+

E .

The vector τE is the unit vector parallel to E (and orthogonal to n). We have for
any choice of the constants α, α+ and α− that v · n = α is continuous across E.
Again, the above argument needs to be modified at a boundary edge. For simplicity,
we shall not specifically mention the boundary edge case when the modification is
obvious.

Alternatively, one may use the Helmholtz decomposition ([1]) of any piecewise
constant vector v = ∇ψ + curlφ, where φ is piecewise linear conforming and
ψ is a piecewise linear nonconforming Crouzeix–Raviart function (continuous at
midpoints). Here the decomposition is considered locally on each dual element
Q = E ∪ T+

E ∪ T−E , and the function ψ vanishes on ∂Q and is linear on each of T+
E

and T−E . This actually implies that ψ = 0. Therefore, v = curlφ. (This conclusion
can also be derived directly without using the Helmholtz decomposition.) Acting
in this way one can construct a basis in our spaces Vh.

Note that the basis is local; the support of each basis (vector-) function being
the dual element QE. Associated with each interior edge E of Eh are three basis
functions and so the number of degrees of freedom of Vh associated with interior
edges are three times the cardinality of the set of all interior edges in Eh. Comparing
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this with the dimension of the associated Raviart–Thomas space V̂h, we have proved
the following main result.

Theorem 3.1. The space Vh = γhV̂h is a proper subspace of Vh, and Vh is
isomorphic to the lowest order Raviart–Thomas space V̂h. Moreover, the operator
γh : V̂h → Vh is bounded, one-to-one, and L2-coercive.

4. A priori estimates

In this section we establish the stability of system (2.8) and its restricted version.
The following identity is readily seen ([23]).

Lemma 4.1. Define the bilinear form c = ch on Wh ×Wh,

c(w, q) =
∑

T∈Th

∫
∂T

qi
(
wi(b · n)+ + wo(b · n)−

)
+ (c0w, q).(4.1)

Then, for w = q ∈Wh one gets the identity,

c(q, q) =
1
2

∑
E∈Eh

∫
E

[q]2|b · n| dρ+
(

(c0 +
1
2

div b)q, q
)
,(4.2)

which due to (2.3) implies the positive semi-definiteness of the form Ch defined in
(4.5) below.

Next we introduce the bilinear forms:
• Ah : Vh 7→ Vh, defined by

(Ahv, χ) = (K−1v, χ), for all v, χ ∈ Vh;(4.3)

• Bh : Vh 7→Wh defined by

(Bhv, q) =
∑

E∈Eh

∫
E

v · nE [q]E , for all v ∈ Vh, for all q ∈ Wh;(4.4)

• Ch : Wh 7→Wh,

(Chq, ψ) =
∑

T∈Th

∫
∂T

ψi
(
qi(b · n)+ + qo(b · n)−

)
+ (c0q, ψ), for all q, ψ ∈Wh.

(4.5)

We can now formulate (2.8) in the operator saddle-point form[
Ah BT

h

Bh −Ch

] [
uh

ph

]
=
[

0
−fh

]
,(4.6)

where fh is the L2 projection of f onto Wh, the space of piecewise constant func-
tions.

Having the explicit representation of a basis of Vh given by{
αEnE + α+

Eτ
+
E + α−Eτ

−
E , E ∈ Eh

}
,(4.7)

we can prove solvability and uniqueness of the discrete problem (2.8). First observe
that

(Ahv, v) =
∑

E∈Eh

∫
T+

E ∪T−
E

K−1v · v

≤ γ−1
1

∑
T∈Th

∑
E∈∂T

(|T+
E |+ |T−E |)

(
α2

E + (α−E)2 + (α+
E)2
)
,
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where γ1 is from (2.2), αE = v · nE and α−E = v · τ−E , etc. Then, it is clear that

γ−1
2 ‖γhv̂‖20 ≤ (Ahγhv̂,γhv̂) ≤ Const ‖v̂‖20, for any v̂ ∈ V̂h.(4.8)

The last estimate also follows from the global equivalence (3.2). Also, note that

(Bhγhv̂, q) = (div v̂, q), for all v̂ ∈ V̂h and q ∈Wh.(4.9)

This, together with (4.8) imply the discrete inf-sup condition

β‖q‖0 ≤ sup
v∈Vh

(Bhv, q)

(‖v‖20 + ‖Bhv‖20)
1
2

(4.10)

for some positive constant β. This is seen from Theorem 3.1, the inf-sup condition
on the Raviart–Thomas spaces (V̂h,Wh), the L2 boundedness (4.8) of γh, and
‖Bhγhv̂‖0 ≤ ‖ div v̂‖0 for any v̂ ∈ V̂h implied by the commutativity property (4.9).

Now the solvability of the discrete problem follows from the a priori estimates
in the following lemma.

Lemma 4.2. Assume that the form Ch is coercive (see Lemma 4.1). Consider the
following problem: [

Ah BT
h

Bh −Ch

] [
χ
w

]
=
[
g
f

]
·(4.11)

Here g is a given L2-bounded linear functional, namely

|g(v)| ≤ ‖g‖0‖v‖0, for all v ∈ Vh.

Similarly, f is a given L2-bounded functional,

|f(q)| ≤ ‖f‖0‖q‖0, for all q ∈ Wh.

Then, the following a priori estimate holds:

‖χ‖0 ≤ C

[
γ2

γ1
‖f‖0 + γ2‖g‖0

]
‖w‖0 ≤ C

[
‖g‖0 + γ−1

1 ‖f‖0
] γ2

γ1
.

(4.12)

For the convection dominated case, i.e., when γ2 � |b|∞, the estimate for w dete-
riorates, but using the strong coercivity of Ch, one gets the alternative estimate,

γ0‖w‖20 ≤ ‖f‖0‖w‖0 + ‖g‖0‖χ‖0,
that is,

‖w‖0 ≤ Cγ−1
0

[
‖f‖0 +

(
γ2

γ1
‖f‖0 + γ2‖g‖0

)]
·(4.13)

If one considers the problem (4.11) only in the subspace γhV̂h, then in addition,
one gets the estimate,

‖ div γ−1
h χ‖0 ≤ ‖f‖0 +

[
C0h

−1 + |c0|∞
] [
‖g‖0 + γ−1

1 ‖f‖0
]
,

or the alternative estimate,

‖ div γ−1
h χ‖0 ≤ ‖f‖0 + C

[
C0h

−1 + |c0|∞
]
γ−1
0

[
‖f‖0 +

(
γ2

γ1
‖f‖0 + γ2‖g‖0

)]
·

The constant C0 can be taken to be zero if the convection term is not present.
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Proof. Testing the first equation of (4.11) with χ and the the second equation of
(4.11) with −w and adding them together, one arrives at

(Ahχ, χ) + Ch(w,w) = −f(w) + g(χ) ≤ ‖f‖0‖w‖0 + ‖g‖0‖χ‖0.(4.14)

Using the inf-sup condition for q = w in (4.10) yields

β‖w‖0 ≤ sup
v

(Bhv, w)
(‖v‖2 + ‖Bhv‖2)

1
2

≤ sup
v

g(v)− (Ahv, χ)

(‖v‖2 + ‖Bhv‖2)
1
2

≤ ‖g‖0 + γ−1
1 ‖χ‖0,

which together with (4.14) implies,

(Ahχ, χ) + Ch(w,w) ≤ ‖f‖0‖w‖0 + ‖g‖0‖χ‖0
≤ ‖f‖β−1

(
‖g‖0 + γ−1

1 ‖χ‖0
)

+ ‖g‖0‖χ‖0.

Apply the coercivity of Ch and Ah, respectively, and use the generalized arithmetic-
geometric inequality to obtain

γ−1
2 (1 − δ)‖χ‖20 ≤ β−1‖f‖0‖g‖0 +

γ2

4
δ−1

[
β−1γ−1

1 ‖f‖0 + ‖g‖0
]2 ·(4.15)

Therefore, for w one gets the estimate

β‖w‖0 ≤ ‖g‖0 + γ−1
1 ‖χ‖0 ≤ C(γ−1

1 ‖f‖0 + ‖g‖0)
γ2

γ1
·(4.16)

In the case of seeking a solution in the subspace γhV̂h, we test the second
equation of (4.11) with q = div γ−1

h χ and use the commutativity relation (4.9) to
obtain

‖ div γ−1
h χ‖20 = (Bhχ, div γ−1

h χ)

= (f, div γ−1
h uh) + (Chw, div γ−1

h χ)

≤ ‖f‖0‖ div γ−1
h uh‖0 +

[
C0h

−1 + |c0|∞
]
‖w‖0‖ div γ−1

h uh‖0·

Here we have used an inverse inequality for Chw, which follows from Lemma 4.1.
Hence

‖ div γ−1
h χ‖0 ≤ ‖f‖0 +

[
C0h

−1 + |c0|∞
]
‖w‖0 ·

To bound ‖w‖0 one can either use (4.13) or (the second estimate in) (4.12).

Corollary 4.1. Assume that b = 0 and c0 = 0 and that we solve the problem (4.11)
in the subspace γhV̂h. Then the following a priori estimate holds:(

‖χ̂‖2H(div) + ‖w‖20
) 1

2 ≤ C
(
‖A−

1
2

0 g‖0 + ‖f‖0
)
·

Here, A0 is defined as

(A0 γhv̂,γhθ̂) = (div v̂, div θ̂) + (K−1v̂, θ̂), for all θ̂, v̂ ∈ V̂h ·
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5. Properties of γh

In this section we prove some technical properties of the main operator γh that
relates V̂h and its image Vh = γhV̂h ⊂ Vh. We will actually show a little more;
namely, in view of (3.1), one can extend the domain of γh to the discontinuous
Raviart–Thomas space V̂d

h (the superscript stands for “discontinuous”). In other
words, we do not require V̂d

h to be a subspace of H(div,Ω). In particular, we show
symmetry and coercivity of γh in the discontinuous Raviart–Thomas space V̂d

h.
We first show that γh is a self-adjoint operator with respect to the L2 inner

product on V̂d
h.

Lemma 5.1. Let V̂d
h be the discontinuous Raviart–Thomas space on rectangular

or triangular elements; i.e., we do not require that the space be a subspace of
H(div,Ω). The following relation holds:

(γhv̂, ŵ) = (v̂,γhŵ) for all v̂, ŵ ∈ V̂d
h ·(5.1)

Proof. It suffices to show that the x-component result holds over a reference element
T , since the y-component result can be handled similarly. In other words, we show
that

∫
T γhv̂ ŵ dxdy =

∫
T v̂ γhŵ dxdy, where v̂ and ŵ are the x-components of v̂

and ŵ, respectively, and where γhv̂ is the x-component of γhv̂.
We first demonstrate the result for T = (0, 1)× (0, 1). Then V̂d

h is the Raviart–
Thomas space on rectangles. Let λ1(x, y) = 1 − x and λ2(x, y) = x be the two
nodal basis functions and let Ti, 1 ≤ i ≤ 4, be the four triangles formed by drawing
the two diagonals. It is straightforward to show that for Mij :=

∫
(γhλi)λjdxdy =

Σ4
k=1

∫
Tk

(γhλi)λjdxdy, 1 ≤ i, j ≤ 2,

Mij =


|T |
3

if i = j,

|T |
6

if i 6= j.

Hence M is a symmetric matrix.
As for the triangular elements, let T be the reference triangle with the vertices

a1 = (0, 0), a2 = (1, 1) and a3 = (0, 1) and the barycenter c = (1/3, 2/3). Let
T1, T2, T3 be the subtriangles ∆ca2a3,∆ca3a1,∆a1ca2, respectively.

Obviously, any x-component of a vector field v̂ in V̂d
h, when restricted to T , has

the form a+ bx+ cy. Thus let λi be the Lagrange nodal basis function associated
with ai such that λi(aj) = δij , 1 ≤ i, j ≤ 3. Then with the above ordering it is easy
to show that for Mij :=

∫
(γhλi)λjdxdy = Σ3

k=1

∫
Tk

(γhλi)λjdxdy, 1 ≤ i, j ≤ 3,

Mij =


5|T |
54

if i 6= j,

4|T |
27

if i = j.

(5.2)

Hence M is a symmetric matrix. This completes the proof.

Lemma 5.2. Let V̂d
h be the discontinuous Raviart–Thomas space on rectangular

or triangular elements. Then the following coercivity estimate holds:

(γhv̂, v̂) ≥ δ‖v̂‖20, for all v̂ ∈ V̂d
h ·
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Proof. It is sufficient to show that the result holds on a reference element T . We
will only show the triangular case, since the easier rectangular case can be done in
a similar fashion.

For triangular elements, let v̂ = (a + bx + cy, p + qx + ry)t in V̂d
h. Then from

(5.2) we obtain after simple calculations that∫
T

γhv̂ · v̂ dxdy =
|T |
3

[
3a2 +

4
9
b2 + 2ab+ 4ac+

13
9
bc+

13
9
c2

+3p2 +
4
9
q2 + 2pq + 4pr +

13
9
rq +

13
9
r2
]
·

The positive-definiteness is then seen by looking at the coefficient matrix of the
above quadratic forms, 

3 1 2

1
4
9

13
18

2
13
18

13
9

 ·

By direct computation one sees that the eigenvalues are 0.1136, 0.0518 and 4.7235.
Hence ∫

T

γhv̂ · v̂ dxdy ≥ 0.0518 · |T |
3
[
a2 + b2 + c2 + p2 + q2 + r2

]
≥ δ‖v̂‖20, T ·

We finally show the coercivity of γh in the weighted inner product (K−1·, ·).
Lemma 5.3. Assume that K ∈ W 1,∞. Then for sufficiently small h

(K−1v̂,γhv̂) ≥ δ(K−1v̂, v̂), for all v̂ ∈ V̂d
h.

Proof. Assume for the time being that K is a piecewise constant matrix with respect
to the elements T ∈ Th. Then, it is clear that K− 1

2 is also a piecewise constant
matrix and that

K− 1
2 γhv̂ = γhK−

1
2 v̂.

Therefore, by Lemma 5.2 one gets

(K−1γhv̂, v̂) = (γhK−
1
2 v̂, K− 1

2 v̂) ≥ δ(K− 1
2 v̂, K− 1

2 v̂) = δ(K−1v̂, v̂) ·
For the variable coefficient case, consider the piecewise constant interpolant K0 =
1
|T |
∫

T
K dxdy. Then, for sufficiently small h,

(K−1γhv̂, v̂) = ((K−1 −K−1
0 )γhv̂, v̂) + (K−1

0 γhv̂, v̂)

≥ (−Ch+ δ)(K−1
0 v̂, v̂) ≥ δ1(K−1v̂, v̂)·

Lemma 5.4. Let V̂d
h be the discontinuous Raviart–Thomas space on rectangular

or triangular elements. If K ∈ W 1,∞, then there exists a constant C independent
of h such that

a(u, (I − γh)ŵh) ≤ Ch||u||1||ŵh||0, for all ŵh ∈ V̂d
h,(5.3)

and for all u such that u ∈ H1.
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Proof. Let Qh : (L2(Ω))2 7→ Vd
h be the (L2(Ω))2 projection onto the space of

piecewise constant vectors and consider the coefficient K0, the piecewise constant
average of K. One has,

a(u, (I − γh)ŵh) = ((K−1 −K−1
0 )u, (I − γh)ŵh) + (K−1

0 u, (I − γh)ŵh)

≤ Ch‖u‖0‖ŵh‖0 + (u,K−1
0 (I − γh)ŵh)

= Ch‖u‖0‖ŵh‖0 + (u, (I − γh)K−1
0 ŵh)

= Ch‖u‖0‖ŵh‖0 + (u−Qhu, (I − γh)K−1
0 ŵh)

≤ Ch‖u‖0‖ŵh‖0 + Ch|u|1‖ŵh‖0
≤ Ch‖u‖1‖ŵh‖0·

Here we used the symmetry and boundedness of γh and that γhQhu = Qhu.
Also, we used the fact that K−1

0 γhŵh = γhK−1
0 ŵh, and that the coefficient K−1 ∈

W 1,∞.

6. Some particular examples of covolume schemes

We are now in a position to formulate two main covolume schemes: one symmet-
ric and the other nonsymmetric. Consider the space V′

h that is a certain collection
of piecewise polynomials (constants or linear functions) with continuous normal
components across the edges E of the primal elements T ∈ Th. In our application,
V

′
h will be either Vh = γhV̂h or V̂h, the lowest order Raviart–Thomas space.
Define the bilinear form A(v, p; w, q) on (V

′
h,Wh)× (Vh,Wh),

A(v, p; w, q) = a(v,w) + b(w, p)− b(v, q) + c(p, q).(6.1)

Recall that,

a(v,w) = (K−1v,w),

b(w, q) =
∑

E∈Eh

∫
E

w · nE [q] dρ,

c(p, q) = (Chp, q) =
∑

T∈Th

∫
∂T

qi
(
pi(b · n)+ + po(b · n)−

)
dρ+ (c0p, q).

Let V̂h be the lowest order Raviart–Thomas space on triangular or rectangular
elements and Wh be the space of piecewise constants associated with the primal
partition Th of the given polygonal domain Ω.

• “A nonsymmetric covolume scheme”: Here we let V
′
h = V̂h and V h = γhV̂h.

Find ûh ∈ V̂h and ph ∈ Wh such that

A(ûh, ph; γhŵ, q) = (f, q), for all ŵ ∈ V̂h, q ∈Wh ·(6.2)

(Note that the above system is equivalent to (2.9).)
• “a symmetric covolume scheme”: Here we let V

′
h = Vh = γhV̂h. Find

ûh ∈ V̂h and ph ∈Wh such that

A(γhûh, ph; γhŵ, q) = (f, q), for all ŵ ∈ V̂h, q ∈Wh ·(6.3)

(Note that this system is obtained from (2.8) by restricting its trial and test
spaces to γhV̂h.)
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The uniqueness and hence the existence of a solution of the system (6.3) was
demonstrated in Lemma 4.2. For the nonsymmetric system (6.2), we have the
following lemma.

Lemma 6.1. For h sufficiently small, there is a unique (uh, ph) ∈ V̂h ×Wh for
the system

a(uh,γhwh) + b(γhwh, ph) = 0, ∀wh in V̂h,

b(γhuh, qh)− c(ph, qh) = −(f, qh), ∀qh in Wh.

Remark 6.1. Since

b(γhv̂, q) = b(v̂, q) ∀v̂ ∈ V̂h,(6.4)

the above system is the same as system (6.2).

Proof. Define the bilinear form on V̂h ×Wh

H(zh, s;wh, t) := a(zh,γhwh) + b(γhwh, s)− b(γhzh, t) + c(s, t).

Obviously, the above system is equivalent to

H(uh, ph;wh, qh) = φ(wh, qh) ∀(wh, qh) ∈ V̂h ×Wh,

where

φ(wh, qh) := (f, qh)

is a linear functional on V̂h ×Wh. By Lemma 4.1

H(wh, qh;wh, qh) = a(wh, γhwh) + ((α +
1
2
∇ · b)qh, qh) +

1
2
|||qh|||2.(6.5)

Here,

|||w|||2 ≡
∑

E∈Eh

∫
E

[w]2|b · n| dρ ·

It suffices to show that H(wh, qh;wh, qh) = 0 admits only a zero solution, which
can be inferred by the coercivity of H(wh, qh;wh, qh) implied by Lemma 5.3 and
(2.3).

We now provide error estimates for the systems (6.2) and (6.3)

Theorem 6.1. Assume the coefficient K ∈ W 1,∞. Let u be the solution of the
weak form (2.5), and let uh be the solution of either the symmetric method (6.2)
or nonsymmetric covolume method (6.3). Then there exist constants C1 > 0 and
C2 ≥ 0 independent of h

‖u− uh‖0 + ‖p− ph‖0 ≤ C1h(‖u‖1 + ‖p‖1) + C2h
1/2||p||1(6.6)

provided that u ∈ H1 and p ∈ H1. Furthermore, the constant C2 can be taken as
zero in the case of pure diffusion problems; i.e., b = 0 in (2.1).

Proof. The proof is simple but long. The basic idea is to first prove the error
estimate for the nonsymmetric problem by comparing it with a standard mixed
finite element method, and then prove the error estimate for the symmetric problem
by comparing it with the nonsymmetric problem.
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Introduce the auxiliary mixed formulation to (2.4): find (ũh, p̃h) ∈ V̂h×Wh such
that

a(ũh,wh) + b(γhwh, p̃h) = 0, ∀wh in V̂h(6.7)

b(γhũh, qh)− c(p̃h, qh) = −(f, qh), ∀qh in Wh.(6.8)

Let

H̃(zh, s;wh, t) := a(zh,wh) + b(γhwh, s)− b(γhzh, t) + c(s, t)(6.9)

be a bilinear form on V̂h ×Wh. Then (6.7)–(6.8) is equivalent to the problem of
finding (ũh, p̃h) ∈ V̂h ×Wh such that

H̃(ũh, p̃h;wh, qh) = φ(wh, qh) ∀(wh, qh) ∈ V̂h ×Wh,(6.10)

where

φ(wh, qh) := (f, qh)

is a linear functional on V̂h ×Wh.
Once again if we observe (6.4), then this system has the following convergence

result (See equation (5.5) in [23])

||u− ũh||0 + ||p− p̃h||0 ≤ C1h(||u||1 + ‖p‖1) + C2h
1/2||p||1(6.11)

provided that u ∈ H1, p ∈ H1. Here C2 can be taken to be zero for the pure
diffusion problem (i.e., when b = 0).

On the other hand, consider the nonsymmetric problem (6.2) of finding (ūh, p̄h) ∈
V̂h ×Wh such that

H̄(ūh, p̄h;wh, qh) = φ(wh, qh) ∀(wh, qh) ∈ V̂h ×Wh,(6.12)

where

H̄(zh, s;wh, t) := a(zh,γhwh) + b(γhwh, s)− b(γhzh, t) + c(s, t).(6.13)

Note that the right-hand side is exactly A(ūh, p̄h; γhwh, qh), where A is as in (6.2).
Using the bilinearity, (6.12), (6.10), we have

H̄(ũh − ūh, p̃h − p̄h;wh, qh) = H̄(ũh, p̃h;wh, qh)− H̄(ūh, p̄h;wh, qh)

= H̄(ũh, p̃h;wh, qh)− H̃(ũh, p̃h;wh, qh).

Hence by (6.13) and (6.9) we have

H̄(ũh − ūh, p̃h − p̄h;wh, qh) = a(ũh,γhwh)− a(ũh,wh).(6.14)

Since the total error eh := (u− ũh)+(ũh− ūh), by the triangle inequality it suffices
to estimate ũh − ūh. Now set wh = ẽh := ũh − ūh and qh = τ̃h := p̃h − p̄h in the
above equation to get the error equation

H̄(ẽh, τ̃h; ẽh, τ̃h) = a(ũh, (γh − I)ẽh)(6.15)
= a(ũh − u, (γh − I)ẽh) + a(u, (γh − I)ẽh)(6.16)
≤ C||ũh − u||0||ẽh||0 + Ch||u||1||ẽh||0(6.17)

≤
[
Ch(||u||1 + ‖p‖1) + C2h

1/2||p||1
]
||ẽh||0,(6.18)
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where we have used (5.3) in deriving (6.17), and (6.11) in deriving (6.18). Applying
(6.5) to the left side of (6.15), we get from (6.18) that

a(ẽh,γhẽh) + ((α+
1
2
∇ · b)τ̃h, τ̃h) +

1
2
|||τ̃h|||2(6.19)

≤
[
Ch (||u||1 + ‖p‖1) + C2h

1/2||p||1
]
||ẽh||0.(6.20)

Invoking (2.3) completes the estimate on ūh and

||u− ūh||0 + ||p− p̄h||0 ≤ (Ch(||u||1 + ‖p‖1) + C2h
1/2||p||1)(6.21)

provided that u ∈ H1, p ∈ H1.
Now the covolume method (6.3) is equivalent to the problem of

H(uh, ph;wh, qh) = φ(wh, qh) ∀(wh, qh) ∈ V̂h ×Wh,(6.22)

where

H(zh, s;wh, t) := a(γhzh,γhwh) + b(γhwh, s)− b(γhzh, t) + c(s, t).(6.23)

Using the bilinearity, (6.22), (6.23), we have

H(uh − ūh, ph − p̄h;wh, qh) = H(uh, ph;wh, qh)−H(ūh, p̄h;wh, qh)
= H̄(ūh, p̄h;wh, qh)−H(ūh, p̄h;wh, qh)
= a(ūh,γhwh)− a(γhūh,γhwh).

Now set wh = ēh := ūh − uh and qh = τ̄h := p̄h − ph in the above equation to get
the error equation

H(ēh, τ̄h; ēh, τ̄h) = a ((I − γh)(ūh − u),γhēh)
+a ((I − γh)u,γhēh)(6.24)

≤ C||ūh − u||0||ēh||0 + Ch||u||1||ēh||0(6.25)

≤
[
Ch(||u||1 + ‖p‖1) + C2h

1/2||p||1
]
||ēh||0.(6.26)

As before,

a(γhēh,γhēh) + ((α +
1
2
∇ · b)τ̄h, τ̄h) +

1
2
|||τ̄h|||2(6.27)

≤
[
Ch(||u||1 + ‖p‖1) + C2h

1/2||p||1
]
||ēh||0.(6.28)

Invoking (2.3) and coercivity completes the estimate on uh.

Remark 6.2. We note that

‖u− γhuh‖0 + ‖p− ph‖0 ≤ C1h(‖u‖1 + ‖p‖1) + C2h
1/2||p||1,(6.29)

which is obtained by simply observing that

||uh − γhuh||0 ≤ ||uh − u||0 + ||u− γhu||0 + ||γh(u− uh)||0.

7. Numerical experiments

In this section we present numerical results that illustrate the error behavior
of the studied mixed covolume method for two cases: the pure diffusion problem
(b = 0 and c0 = 0 in (2.1)) and the convection dominated problem. Extensive tests
on the nonsymmetric (i.e., Petrov–Galerkin) scheme using rectangular elements for
convection-diffusion problems on axi-parallel domains have been presented in Chou,
Kwak and Vassilevski ([17]).
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Numerical tests for diffusion problems. Here we used the proper subspace
γhV̂h as our discretization space. The problem was

∇ · (−K∇p) = f(x, y), (x, y) ∈ Ω = (0, 1)2.(7.1)

The exact solution was chosen p = x(1− x)y(1− y) and Dirichlet boundary condi-
tions were imposed. The coefficients of the operator were

K =
[

1 + 10x2 + y2 1
2 + x2 + y2

1
2 + x2 + y2 1 + x2 + 10y2

]
.

For the velocity variable u = (u1, u2) we used the special piecewise constant
vectors that corresponded to γhv for v in the lowest order Raviart–Thomas piece-
wise polynomial space V̂h on isosceles right-angled triangles of size h, for h =
2−4, 2−5, 2−6, 2−7.

After the discretization one ends up with the following linear system of equations
to be solved:

A

 U1

U2

P

 = f =

 rhsU1

rhsU2

rhsP

 ,(7.2)

with the saddle-point like stiffness matrix

A =
[
A BT

B 0

]
·(7.3)

We used the fact that A satisfies the inf-sup condition,

sup
γhv,q

A(γhu, p; γhv, q)[
‖v‖2H(div) + ‖q‖20

] 1
2
≥ β

[
‖u‖2H(div) + ‖p‖20

] 1
2
, for all (u, p) ∈ Vh ×Wh,

(7.4)

which in matrix form reduces to the spectral equivalence relations(
ATA−1

0 Ax,x
)
≥ β(A0x,x), for all x = (U1,U2,P).(7.5)

Here, A0 =
[
A0 0
0 I

]
, where A0 corresponds to the stiffness matrix arising from

theH(div)-bilinear form
∫
K−1u·v+

∫
div u div v, restricted to the Raviart–Thomas

space for the velocity variable.
Now any preconditioner M of optimal order for A0 will define an optimal order

preconditionerM =
[
M 0
0 I

]
for A. Since A is symmetric but indefinite, one can

either useM as a preconditioner in the MINRES method forA, or one can useM as
a preconditioner to ATM−1A in the standard CG method. Alternatively, one may
use the transformation proposed in [5] to have the saddle-point problem coercive
in a certain inner product. In our experiments we have chosen the preconditioned
MINRES method. The search vectors in the MINRES method were constructed
orthogonally in the (M−1A·,A·)-inner product.

Choices ofM , a preconditioner for theH(div)-bilinear form are found in [2, 7, 30].
In the experiments reported in Table 1, we used an algebraically stabilized version
of the hierarchical method from [7]. Details on the algebraic stabilization of the
HB methods are found in [31].
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Table 1. Error behavior and iteration counts for the covolume scheme

h = 1/16 h = 1/32 h = 1/64 h = 1/128 ≈ order
δp 2.30e-4 5.78e-5 1.44e-5 3.62e-6 2
δu1 4.48e-3 1.12e-3 2.87e-4 7.35e-5 2
δu2 4.48e-3 1.12e-3 2.87e-4 7.35e-5 2
δuint 1.96e-3 5.19e-4 1.35e-4 3.52e-5 2

# unknowns 1312 5184 20 608 82 176
# iterations 29 30 31 31

% 0.47 0.48 0.49 0.50
κ 2.00 2.09 2.20 2.25

The stopping criterion in the MINRES method was

‖M− 1
2Ar‖ ≤ 10−9‖M− 1

2Ar0‖,

where ‖v‖2 = vT v, and r0 stands for the initial residual, r is the current one. The
initial iterate was chosen as x0 = M−1f , where f was the right-hand side of the
discrete problem Ax = f .

We show in Table 1, in addition to the error behavior of the covolume discretiza-
tion method, also %, κ and the number of iterations, where

% =

(
‖M− 1

2Ar‖
‖M− 1

2Ar0‖

) 1
# iterations

(7.6)

was an average reduction factor, and κ was the condition number of M−1A0.

Recall that A0 =
[
A0 0
0 I

]
, where A0 stands for the matrix corresponding to

the H(div)-bilinear form (K−1u, v) + (div u, div v) computed from the triangular
Raviart–Thomas velocity space.

More specifically, denote xi = ihx, yj =jhy, i = 0, 1, 2, . . . , nx, j = 0, 1, 2, . . . , ny,
hx = hy = h, nx = ny = n = 1/h, for a given h = 2−4, 2−5, 2−6, 2−7. In Table 1,
we show:

(i)

δp = ‖Ihp− ph‖h

≡

 nx∑
i=1

ny∑
j=1

hxhy(p(xi −
1
2
hx, yj −

1
2
hy)− ph(xi −

1
2
hx, yj −

1
2
hy))2

 1
2

,

i.e., a discrete L2-norm of the error p− ph;
(ii)

δu1 = ‖Ihu1 − uh, 1‖h

≡

 nx∑
i=0

ny∑
j=1

hxhy(u1(xi, yj −
1
2
hy)− uh, 1(xi, yj −

1
2
hy))2

 1
2

,

i.e., a discrete L2-norm of the error u1 − uh,1;
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(iii)

δu2 = ‖Ihu2 − uh, 2‖h

≡

 nx∑
i=1

ny∑
j=0

hxhy(u2(xi −
1
2
hx, yj)− uh, 2(xi −

1
2
hx, yj))2

 1
2

,

i.e., a discrete L2-norm of the error u2 − uh, 2;
(iv)

δuint = ‖Ih(u− uh)‖h

≡

 nx∑
i=1

ny∑
j=0

hxhy

(
(u · n)(xi −

1
2
hx, yj −

1
2
hy)

− (uh · n)(xi −
1
2
hx, yj −

1
2
hy)
)2
] 1

2

,

i.e., a discrete L2-norm of the error u · n− uh · n, where n is the unit normal
vector to the edge (xi−1, yj−1), (xi, yj);

(v) the number of iterations of the preconditioned MINRES method;
(vi) the average reduction factors %, (7.6);
(vii) the condition number κ of M−1A0;
(viii) the total number of unknowns (for both U and P).

It turns out, that our experiments suggest second order approximation for all
variables, i.e., a superconvergence behavior of the covolume scheme. Notice also
the constant number of iterations (and corresponding average reduction factors %)
in the preconditioned MINRES method.

Numerical tests for convection-diffusion problems. In this section we con-
sider the error behavior of the problem

∇ · (−εK∇p+ bp) + c0p = f(x, y), (x, y) ∈ Ω = (0, 1)2.(7.7)

The exact solution chosen is p = x(1−x)y(1−y), and Dirichlet boundary conditions
are imposed. The coefficients of the operator are K = (kij), k11 = 1 + 10x2 + y2,
k12 = k21 = 1

2 + x2 + y2, and k22 = 1 + x2 + 10y2, c0 = 1 and b = (b1, b2)T , where

b1 = − cosα(1− x cosα),

b2 = − sinα(1 − y sinα),
(7.8)

for angle α = − 3
4π.

Note that∇·b = 1 so that the condition (2.3) is satisfied, i.e., c0+ 1
2 ∇·b ≥ γ0 > 0.

We have chosen in the experiments ε = 1, 10−2, and ε = 10−3.
For the discretization we use the nonsymmetric (Petrov–Galerkin) scheme, i.e.,

the test spaces are γhV̂h and Wh, whereas the trial space is (V̂h, Wh)—the low-
est order Raviart–Thomas spaces on squares of size h = 2−`, ` = 4, 5, . . . , 8. The
saddle-point system of equations is solved via inner-outer iteration method as de-
scribed in [4], where the major block A is solved within certain high accuracy
(the relative residual reduction tolerance was ε1 = 10−6) and the approximately
obtained Schur complement system is solved by inner iterations using a steepest
descent type iteration method (as described in [4]) using a block-ILU preconditioner
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Table 2. Error behavior and iteration counts for the covolume
scheme; ε = 0.001, α = − 3

4π

h = 1/16 h = 1/32 h = 1/64 h = 1/128 h = 1/256 ≈ order

δp 3.47e-3 1.78e-3 9.06e-4 4.61e-4 2.37e-4 1
δu1 1.54e-4 8.10e-5 4.25e-5 2.21e-5 1.14e-5 1
δu2 6.54e-4 3.82e-4 2.03e-4 1.02e-4 5.08e-5 1

# unknowns 800 3136 12 416 49 408 197120
# outer it. 6 5 6 6 6
# inner it. 2 3 4 5 8

% 7.96e-2 5.27e-2 8.43e-2 8.11e-2 8.74e-2

Table 3. Error behavior and iteration counts for the covolume
scheme; ε = 0.01, α = − 3

4π

h = 1/16 h = 1/32 h = 1/64 h = 1/128 h = 1/256 ≈ order

δp 2.91e-3 1.57e-3 8.39e-4 4.42e-4 2.30e-4 1
δu1 8.14e-4 4.18e-4 2.16e-4 1.11e-4 5.68e-5 1
δu2 2.22e-3 1.11e-3 5.52e-4 2.74e-4 1.36e-4 1

# unknowns 800 3 136 12 416 49 408 197 120
# outer it. 6 6 7 7 7
# inner it. 4 4 6 14 36

% 0.08 0.06 0.11 0.12 0.13

Table 4. Error behavior and iteration counts for the covolume
scheme; ε = 1, α = − 3

4π

h = 1/16 h = 1/32 h = 1/64 h = 1/128 h = 1/256 ≈ order

δp 1.30e-4 8.36e-5 4.72e-5 2.49e-5 1.28e-5 1
δu1 5.32e-3 2.10e-3 9.20e-4 4.30e-4 2.08e-4 1
δu2 6.06e-3 2.42e-3 1.06e-3 4.98e-4 2.41e-4 1

# unknowns 800 3 136 12 416 49 408 197 120
# outer it. 6 7 7 7 8
# inner it. 6 8 24 88 324

% 0.09 0.09 0.12 0.13 0.135

for the five-point cell-centered finite difference scheme, obtained by diagonalizing
the weighted mass-matrix based on the diagonal part of the coefficient K. The
relative residual reduction tolerance here was ε2 = 10−2. The outer iterations were
of defect correction type until the relative residual reduction of 10−6 was reached.
The particular tolerances and respective number of iterations (denoted in Tables
2–4 by “# outer it.” and “# inner it.”) are not of major interest here since we are
mainly interested in the error behavior of the discrete solutions. Our experiments
for the tests presented suggest the approximation is of first order.
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